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E D G E  E F F E C T S  I N  T H E  S T R E S S  STATE OF A T H I N  

E L A S T I C  I N T E R L A Y E R  

Yu. M. Volchkov and L. A. Dergileva UDC 539.3 

The edge effects in the stress state of an interlayer in stretching and shearing by rigid slabs 
are studied. On the basis of  the equations of  momentless and moment elastic layers, we solve 
problems modeling qualitatively the stress-strain state in the "soft" layer between two "rigid" 
layers. 

High stress gradients (edge or interlayer effects) occurring at interlayer surfaces in the neighborhood of 
the free boundaries of laminated structures can cause delamination and failures at the boundaries of the layers 
whose mechanical properties differ greatly (at the boundaries of rigid and soft layers). The interlayer effects 
cannot be described by the classical equations of the plate and shell theory or by the models of laminated 
plates in which the longitudinal stresses in soft layers are ignored. Blumberg and Tamuzh [1] investigated the 
edge effects in soft and rigid layers of a laminated plate on the basis of the equations of the Ambartsumyan 
theory of anisotropic plates and the Kirchhoff-Love equations, respectively. The edge effect is studied by the 
method of boundary functions. Most numerical algorithms to determine the interlayer stresses are based on 
the finite-element method. 

In this paper, we study the stress state of a thin elastic interlayer between two nondeformable slabs in 
tension and shear under conditions of plane stress and strain. 

Ivanov [2] developed .a technique for constructing the equations of an elastic layer, which is based 
on the expansion of displacements and stresses in the planar problem of the theory of elasticity in terms 
of the Legendre polynomials. For each of the desired functions (the displacements and stresses), several 
approximations are used. The first-approximation equations of the elastic layer (the equations of the moment 
layer) and their general solutions were derived by the authors in [3]. The first-approximation equations 
are formulated in terms of the quantities usual for the theory of plates: the displacements averaged over 
the thickness, the angles of rotation, forces, and moments. Similarly, one can construct the equations of a 
momentless layer in terms of the displacements and forces averaged over the thickness. Omitting the derivation 
of the equations used in our further consideration, we discuss briefly their principal properties. 

If the thickness of the layer h is small, by virtue of the Saint-Venant principle, the boundary conditions 
at its ends can be divided into two groups: the conditions that affect the solution for all [xll ~< l, which 
we call the basic boundary conditions, and the conditions that affect the solution only in the neighborhood 
of the cross sections zl = =t:l (Fig. 1). In constructing the one-dimensional layer equations, we require that 
the boundary-value problem be solvable for any basic boundary conditions and the order of the differential 
equations be independent of the type of boundary condition specified at its surfaces (this allows us to specify 
correctly the conjugation conditions at the interlayer surfaces). 

1. Equat ions  of t he  Momen t l e s s  Elastic Layer.  We write the system of momentless-layer equations 
in the form 

dCr~ 6#  (u + _ 12# 0 dO'~ 6a 12a 0 
+ - g - u 1  = 0, + - = 0, 
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(1.1) 

0 and a~ are the displacements and stresses averaged over the thickness, g is the shear modulus, u~ where u i 

and a/~ are the displacements and the stresses for x2 = +h/2 ,  E is the Young's modulus, and u is the Poisson 
ratio. 

Tension of the Layer. For tension of the interlayer (the light part in Fig. 2a), the conditions at the 
layer surfaces and the boundary conditions have the form 

u+ =u~" = O, u ~ = : l : V ,  (1.2) 

or0 l = a ~  for X l = 0 ,  u ~ u ~ 0  for Xl~CX~. 

From (1.1) and (1.2), we obtain 

2a du o 1 uO ' 
0.01 -.~ U 0 = O, 0"+22 --~ 0.22 ~-- "--~ V + b ~ X l '  ff12 = -~ ~ 6# -~ 

and the determination of the displacements and stresses in the interlayer reduces to the problem 

~ 0  12~ ~u0 v 
dxl  h2 u~ = O, 0"o 1 -  a ~ - zb ~ = O, 

(1.3) 
~1~ = 0  for Xl = 0 ,  U ~  for Xl~CX~. 

uO = __2bV exp wl = 2 , 
awl h ' 

From (1.3) we obtain 
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and, consequently, 

0"~ = 0"~ = (2,/h)Y[1 - (b/a)  2 exp ( - ~ l x l / h ) ] ,  

0-+12 = -0-5  = 2 3 ~ b V  exp ( -WlXl /h) / (ha) .  

Far from the edge Xl = 0, the uniform stress state,  which corresponds to the uniaxial deformation, 
occurs in the interlayer. For this state, we have 

0-10, = 2bY~h,  0-~ = 2 a Y / h ,  0-~ = O, Tin= = (0-~ - 0 -~  = 2~ ,V/h .  

In the vicinity of the edge Xl = 0, the stress state is nonuniform. Significant shear stresses occur at 
the surfaces x2 = -4-h/2. Their maximum value is 

2 3 ~ b V / ( h a )  = 2x/6#vV/(x/(1 - u ) ( 1 -  2t~)h) 

and, for u = 1/3, it exceeds the maximum shear stress "/'max occurring in the zone of uniform deformation by 
a factor of 3.5. 

Shear of the Interlayer. In the case of shearing the interlayer (Fig. 2b), we have 

u~ = ~ w ,  u~+ = ~ = 0, 

0"01 -'- 0-01 = 0 for Zl = 0, 

From (1.1) and (1.4), we obtain 

0"+-0-5  = -12gu ~ / h, 

a+ - 0"25 = -12au~ 

0-10,, U~ --+ 0 f o r  51 --+ O~. 

0"~ + 0-?2 = 20-~ 
0-~ + 0-~ = 2b auo 

dxl ' 

and determination of the displacements and stresses in the interlayer reduces to solving the problem 

d0"1~ 12Z du o 

O"101 =- 0 for Xl = 0,  0-101 ---I, 0 as  Xl "-~ o o ;  

dC~~ 12a du o W 
Js ,  h: u~ = 0, ~ '  - ~ ~ 1  - 2~ T = 0, 

(1.4) 

(1.5) 

(1.6) 

0-01 ---- 0 for X 1 ----0, u20 ---40 as x 1 ~ oo. 

From (1.5) and (1.6), with allowance for (1.4) we obtain 

o'1~ = 0, u10 = 0, 0"01 = 2#W(1 - e x p ( - w 2 x l / h ) ) / h ,  

u ~ = 2 w  exp ( - ~ x , / h ) / ~ 2 ,  ~2 = 2 V ~ ) - ~  = 2~/6(1 - v ) / (1  - 2v) 

and, consequently, 0-+ = - a ~  -- 12aW exp ( -w2xl /h) / (hw2)  and 0.+ = a 5 = a~l. Thus, under the conditions 
(1.4), the uniform state of the pure shear stress is realized in the interlayer at a large distance from the edge 
zl = 0. In the vicinity of the edge Zl = 0, the stress state, which is characterized by significant tensile stresses 
occurring at the surface x2 = - h / 2 ,  is nonuniform. We note that  

2(i - ~) 
W 2 ~ - -  W1, 

1 - 2u 

and, consequently, the edge-effect zone when the interlayer is shifted is much smaller than that when the 
interlayer is in tension. 
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2. E q u a t i o n s  o f  a M o m e n t  E l a s t i c  L a y e r .  If the  displacements are prescribed at the layer surfaces, 
the equat ions of a moment  elastic layer can be reduced to the following system of differential equations [3]: 

,?=g 3(1 - 3"______) ,,0 = 
2 

2~/2u~ - 15(1 - 3')u, - 63'r/v~) = 

3(1 - e ) ( 4 +  ~, + ~,-) _ - ~  (12+ _ 12-)', 

15(1 -- 3') (u + _ u - )  - 33'7/(v + + v - ) ' ,  
2 

(1 . 2 , , 7/(I -- 3') (u + + u - )  - 3(v + + v - )  + ( i  -- 7) f -  - 7)r/ v o + 277/u 1 - 6vo = 2 

The forces and  the moments  axe expressed through uo, u l ,  and vo by the formulas 

t~l = ~(~=~ + 7 ( . +  - . - ) / 2 ) ,  ~ 1  = ~(r - 3 w o  + 3 7 ( ,  + + , , - ) / 2 ) ,  

t22 : O~(3'r/4~) -1- (12+ - -  v - ) / 2 ) ,  m22 : o~(3'//u~ - 3120 3 t- 3(12 + -4- v - ) / 2 ) ,  

t,2 = T/v~ + (u + - u - ) / 2 ,  m12 = - 3 4 o  + 3(u + + u - ) / 2 ,  

0.~ ----- t12 -4- m12 + r12, o'~ ---- t22 -4- m22, r12 = --541 + 5(u + -- u - ) / 2 .  

For the  plane strain and stress, we have 7 = u/ (1  - u) and 7 = u, respectively. 
Equat ions  (2.1) and (2.2) can be wri t ten in dimensionless variables 

(2.1) 

(2.2) 

aij Cij ao 2ui  x 1 2x2 h 
5"ii = - - ,  gii = m c o = - - ,  fii = ~ = ~ ~ = 7 =  , 

0.0 co # heo' Lo' h ' 2Lo 

I,~ 1 Tn 1 T21 6Mll 
~ /  = O"101 ":  ~ T l l  = 0.01 --~ a T 2 1 - ~  t21 = t12 ~-- , rrtll-m- - - ,  

2a0'  hao '  hao h20.0 

h/2 h/2 h/2 

I / ~I 6 / 4 1  i h~1242 uo = heo_h/2 --~ dx2, Ul - h2co -'~ x2 dx2, vo - ~ 0  --h dx2, 
-hi2 

where 0.0 is the  characteristic stress. The  dimensional quanti t ies are given in Fig. 1. 
Tens ion  of  the Interlayer.  The following conditions are specified at the layer surfaces: 

~ t  = 4 ~  = 0, 4 ~  = + v .  (2.3) 

The boundary  conditions have the form 

t l l ( 0 )  "~ t21(0) ~--" m l l ( 0 )  = O. (2.4) 

We assume that the  uniform stress state is realized at the distance from the  edge ~ = 0. 
From (2.1) and (2.3), we obtain 

U0 "-4 0, 41 ~ 0, V0 -"* 0, t l l  ~ a3 'V,  t22 ~ a V  for ~ ---* cr (2.5) 

In the  neighborhood of the edge ~ = 0, the stress s ta te  is nonuniform. It follows from (2.1)-(2.5) tha t  

Ul --~ 0, Vl --~ 0, t12 = 0, r12 = 0, 

7V ( w ! , ~ ' ~  t , l _ 1 . _ ~ [ l _ e x p (  _ 2 7 V  , 1 3 ( 1 - 7 )  
u o  = e , p  - , = 

~wl q / 7/ ,,j 2 

At the  layer surfaces ( = 4-1, the following normal  and shear stresses occur: 

( _ 
71 / 

2V [ 1 - 3 '  2 ( - ~ - ~ ) ]  a ~  = 33' V 
0.2~2 1 : :'/ exp X , :F 

031 

At the  dis tance from the edge ~ = O, the  uniform stress s ta te  

27V 2V 
t l l  -- - -  t22 -- 

1 - 7 '  1 - 7  

exp 
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is realized. In this case, the maximum shear stress at infinity is 

cr 1 
~m= = ~ (t~2 - h ~ )  = V 

and acts on the site which makes an angle of 45 ~ with the x axis. 
Thus, we have a~(0) /Tm= = :F37/w]. The parameter w~ characterizes the extent of the edge effect. 
The curve of a~(0)/T~'ax versus t, is shown in Fig. 3. The strong dependence of the shear stress which 

occurs in the neighborhood of the free edge upon tension of the interlayer on the Poisson ratio for plane 
strains (curve 1) is explained by the fact that  the strain in the direction perpendicular to the cross section 
of the layer vanishes (e8 = 0). For plane strain, the shear stresses in the proximity of the free surface can 
significantly exceed the shear stresses which correspond to the uniform stress state (curve 2). 

Shear of  Lhe Interlayer. The following conditions are specified at the layer surface: 

u + = U, u -  = U, v + = 0, v -  = 0. (2.6) 

The boundary conditions for-~ = 0 have the form 

h i ( 0 )  = t~ , (0 )  = m , l ( 0 )  = 0. (2 .7)  

The uniaxial stress state which corresponds to the pure shear is realized at infinity: 

~ 0 ( o ~ )  = ~0(o~)  = t l , (Oo)  = 0, ~ { o ~ )  = u .  (2.8)  

From (2.1) and (2.6)-(2.S), we obtain 

v0 = - e x p  ( -w2{h)[C1  (bl cos fl{ - 52 sin fl{) 4- C2(b2 cos fl{ + 51 sin ~{)], 

where 

b, = A(157 + 2(A 2 + B 2) - 15) /}2 = B(157 - 2(A 2 + B 2) - 15) 
67(A 2 + B 2) , 67(A 2 + B 2) , 

v ~  ~ / - 7  + 4v/'5 + 9, /3 = v/~ ~/7 + 4 x / ~ -  9, Cl - U(T/3 + 3b2) 
~ = T T A ' 

C2 = U(3bl")' - T/w2) A = -r/[T/b2(w 2 4- f12) 4- 3.Tfl(b21 4- b22)1. 
A 

Using formulas (2.2), one can calculate the stresses at the layer surface: a ~  = T/v~) - 5ul + 6U and 
a + = -a~2 = a(771u~ - -  3v0). In the neighborhood of the edge ~ -- 0, the stress state is nonuniform, the 
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normal stresses at the layer surfaces having the form 

a~(0) = +6(~ + 1)U 
A [y(~bl - w2b2) + 67bib2]. 

At the surface ~ = -1 ,  these are the tensile stresses which can lead to separation of the layer. 
Figure 4 shows the normal stress a~2(O)h/(~U ) versus the Poisson ratio v (curve 1 refers to the plane 

strains, and curve 2 to the plane stresses; dashed curves refer to the equations of a momentless layer, and 
solid curves to the equations of a moment layer). 
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